

Review Paper 1

**A Hybrid Genetic Algorithm-ANFIS Approach for Maximum Power Point
Tracking in Photovoltaic Systems**

Geetanjali sen¹, Devendra Sharma², M.S. Dash³, Vasant Acharya⁴

Geetsen1825@gmail.com¹, devendrasharma798@gmail.com²
malaya_rec@rediffmail.com², vasantacharyatitc@gmail.com³

¹MTech Scholar, Department of Electrical and Electronics Engineering, Technocrats Institute of Technology, Bhopal, India

² Assistant Professor, Department of Electrical & Electronics Engineering, Technocrats Institute of Technology, Bhopal, India

³ Professor, Department of Electrical & Electronics Engineering, Technocrats Institute of Technology, Bhopal, India\

⁴ Assistant Professor, Department of Electrical & Electronics Engineering, Technocrats Institute of Technology, Bhopal, India

Abstract

The increasing global reliance on renewable energy sources has underscored the importance of optimizing the performance of photovoltaic (PV) systems. A fundamental challenge in this domain is the non-linear power characteristic of PV modules, which necessitates the use of Maximum Power Point Tracking (MPPT) techniques to maximize energy extraction.

Conventional MPPT algorithms, such as Perturb and Observe (P&O) and Incremental Conductance (IncCond), are simple to implement but suffer from significant limitations, including slow tracking speeds, oscillations around the maximum power point (MPP), and a critical inability to locate the Global Maximum Power Point (GMPP) under partial shading conditions. This paper reviews a superior intelligent approach that addresses these deficiencies: a hybrid system combining the global optimization capabilities of the Genetic Algorithm (GA) with the adaptive, human-like reasoning of the Adaptive Neuro-Fuzzy Inference System (ANFIS). The GA is utilized as a powerful offline optimizer to fine-tune the parameters of the

ANFIS controller, circumventing the need for extensive expert knowledge or manually curated training data. The resulting GA-ANFIS controller demonstrates a fast response time, minimal steady-state oscillation, and exceptional robustness in tracking the true GMPP, representing a significant advancement in PV system efficiency and reliability.

Keywords

Photovoltaic (PV) Systems, Maximum Power Point Tracking (MPPT), Genetic Algorithm (GA), Adaptive Neuro-Fuzzy Inference System (ANFIS), Hybrid Control, Renewable Energy, Soft Computing, Global Maximum Power Point (GMPP).

I. Introduction

The growing demand for clean and sustainable energy has positioned photovoltaic (PV) systems as a central component of the global energy transition. However, the efficiency of power conversion in a PV module is highly dependent on ambient conditions such as solar irradiance and temperature. This non-linear relationship creates a unique current-voltage (

I-V) and power-voltage (P-V) characteristic with a single operating point at which maximum power is generated. This point is known as the Maximum Power Point (MPP). To ensure that a PV system continuously operates at this optimal point, a sophisticated control technique called Maximum Power Point Tracking (MPPT) is essential. MPPT algorithms are implemented through electronic circuitry, typically by adjusting the duty cycle of a DC-DC converter, to dynamically match the PV module's output impedance to the load's input impedance.

Early MPPT techniques, such as Perturb and Observe (P&O) and Incremental Conductance (Inc Cond), are widely used due to their simplicity and low implementation cost. However, these methods operate reactively, perturbing the system and observing the effect on power, which leads to oscillations around the MPP and slow tracking under rapidly changing weather conditions. Furthermore, they are inherently local search algorithms and are unable to escape local power maxima in scenarios of partial shading, which can lead to significant energy losses.

To overcome these limitations, research has shifted towards intelligent control algorithms based on soft computing techniques. Fuzzy Logic Controllers (FLCs) and Artificial Neural Networks (ANNs) offer a fast response and low oscillation. However, the design of an FLC requires deep expert knowledge to define its rule base and membership functions, while ANNs are data-intensive, requiring a massive and high-quality dataset for effective training. The Adaptive Neuro-Fuzzy Inference System (ANFIS) was developed to synthesize the strengths of both, but its training and parameter optimization can still be a challenging and complex task. This has led to the development of hybrid intelligent systems, which combine ANFIS with a metaheuristic optimizer to address these remaining challenges. This paper reviews one such advanced approach: the integration of a Genetic Algorithm (GA) to optimize an ANFIS-based MPPT controller.

II. Literature Review and Theoretical Foundations

The evolution of MPPT has progressed from traditional, logic-based methods to sophisticated intelligent algorithms. Traditional approaches like P&O and IncCond are well-established for their straightforward implementation. They operate by sensing the PV array's voltage and current to determine the correct direction for perturbation. While effective under stable conditions, their key drawback is their poor performance in dynamic environments, which manifests as a trade-off between tracking speed and steady-state oscillations. This is exacerbated by their inability to identify the true GMPP in complex scenarios where multiple peaks exist on the P–V curve due to partial shading.

The limitations of conventional methods prompted the adoption of soft computing techniques. Fuzzy logic is particularly effective for highly non-linear systems, as it can process imprecise data using linguistic rules derived from human knowledge, thereby avoiding the need for a precise mathematical model. Conversely, ANNs offer a robust and adaptive approach, excelling at fast tracking under varying environmental conditions. However, both techniques face significant design challenges. FLC's reliance on expert knowledge makes its rule-base design

difficult, while ANNs are often computationally intensive due to their training phase and require large, accurate datasets to function correctly.

ANFIS emerges as a powerful hybrid solution, seamlessly integrating the adaptive learning capabilities of ANNs with the intuitive reasoning of fuzzy systems. An ANFIS model is a five-layered network that maps input-output datasets. It combines the fuzzification of inputs, rule evaluation, and defuzzification into a single framework that can be trained using data. While this approach addresses the need for expert knowledge, the optimization of its parameters, specifically the membership functions and fuzzy rules, remains a complex task. This is where a global optimization algorithm becomes indispensable.

III. The Hybrid GA-ANFIS Methodology

The Genetic Algorithm (GA) is a stochastic, population-based optimization method inspired by the process of natural selection. It is highly effective for solving complex, non-linear optimization problems that are not well-suited for standard gradient-based algorithms. Its ability to perform a global search makes it an ideal candidate for optimizing the ANFIS controller, particularly in PV systems where the objective function has multiple local optima, as is the case under partial shading.

The hybrid GA-ANFIS approach for MPPT is typically an offline training process, in which the GA is used to optimize the ANFIS parameters before deployment. The process is systematic and follows these steps:

1. **Objective Function Definition:** A fitness function is defined to evaluate the performance of each potential solution. For MPPT, the objective is to maximize the power extracted from the PV system for a given set of environmental conditions. The fitness of an individual solution is therefore a measure of how close the power output is to the theoretical MPP.

2. **Initial Population Generation:** An initial population of "chromosomes," each representing a complete set of ANFIS parameters (e.g., membership function parameters and fuzzy rule consequent parameters), is randomly generated.
3. **Evaluation:** Each individual in the population is evaluated by running a simulation of the PV system with the corresponding ANFIS controller. This is commonly performed in a software environment like MATLAB/Simulink. The power output from the simulation is used to calculate the individual's fitness score.
4. **Selection:** Based on their fitness scores, the best-performing individuals are stochastically selected to act as "parents" for the next generation.
5. **Genetic Operations:** New individuals, or "children," are created by applying genetic operators such as crossover (mixing parameters from two parents) and mutation (introducing small random changes) to the selected parents. These operations introduce diversity and allow the algorithm to explore the search space.
6. **Convergence:** The process of evaluation, selection, and genetic operations is repeated for a predefined number of generations. Over time, the population evolves towards a set of ANFIS parameters that provide optimal or near-optimal MPPT performance.

Once the optimal ANFIS parameters are found, the controller is implemented to modulate the duty cycle of a DC-DC boost converter, which is the final control element that regulates the PV system's operating point.

IV. Performance Analysis and Comparative Advantages

The hybrid GA-ANFIS approach offers significant performance advantages over both conventional and standalone intelligent MPPT methods. Key performance metrics for comparison include tracking efficiency, convergence speed, and the presence of steady-state oscillations.

When compared to conventional methods like P&O and IncCond, the hybrid GA-ANFIS controller demonstrates a faster tracking speed and a remarkable reduction in power oscillations

around the MPP. Most critically, its global optimization capability, provided by the GA, allows it to reliably identify the Global Maximum Power Point (GMPP) under partial shading conditions, a task that local search algorithms like P&O and IncCond often fail to accomplish, leading to substantial energy loss.

The hybrid approach also holds advantages over standalone soft computing techniques. While standalone ANFIS models are highly effective, the GA-based training process streamlines the parameter tuning, avoiding the manual and time-consuming efforts often required. In comparison to other hybrid metaheuristic approaches like Particle Swarm Optimization (PSO) and ANFIS (PSO-ANFIS), the choice of the optimizer involves trade-offs. While both GA and PSO are powerful global optimizers, some studies suggest that PSO may have a simpler mathematical analysis and a lower sampling point, which could make it a more pragmatic choice for certain hardware implementations. However, the GA's robust exploration of the solution space makes it a highly effective tool for comprehensive offline optimization.

V. Recent Challenges and Practical Limitations

Despite its superior performance, the hybrid GA-ANFIS approach faces several challenges that hinder its widespread adoption in commercial products. One major hurdle is the computational complexity and time-consuming nature of the offline training phase. The process requires a vast amount of accurate training data to ensure the controller's robustness across a wide range of environmental conditions. Generating this data, whether through simulation or real-world experiments, can be a significant undertaking.

Furthermore, transitioning these complex algorithms from a simulation environment to a real-time, hardware-based system is a major practical challenge. While research has explored implementations using Field-Programmable Gate Arrays (FPGAs) and microcontrollers, these require specialized programming and add to the overall system cost and design complexity. This contrasts with conventional MPPT algorithms, which are often "locked" into commercial

inverters, making it difficult for end-users to modify or upgrade them with advanced intelligent controls.

Emerging PV technologies like bifacial panels and dynamic tracking mounts also introduce new complexities. These systems add variables such as albedo effects and continuously changing solar angles, which require MPPT systems to adapt in real time. This presents an even greater challenge for traditional algorithms and necessitates the use of advanced, self-adaptive approaches like the hybrid GA-ANFIS model.

VI. Future Research Directions

Future research in this field is poised to build upon the successes of the hybrid GA-ANFIS approach by addressing its current limitations and expanding its application. One promising direction is to explore **multi-objective optimization**, where the objective function is expanded beyond just maximizing power. Future work could focus on simultaneously maximizing energy yield while minimizing Total Harmonic Distortion (THD) to ensure grid compliance or optimizing for system resilience.

To bridge the gap between simulation and real-world application, there is a critical need for more **experimental validation** and the use of Hardware-in-the-Loop (HIL) testing frameworks. These systems would allow for the rigorous testing of the algorithm on physical hardware under a wide range of simulated and real-world conditions, thereby increasing confidence in its performance before full-scale commercial deployment.

Finally, the GA-ANFIS methodology is a versatile tool that can be extended to other critical functions within PV systems. Its capabilities in modeling complex, non-linear relationships make it highly suitable for applications such as PV power forecasting and fault detection, which are becoming increasingly important for the management of modern energy grids.

VII. Conclusion

The hybrid Genetic Algorithm-ANFIS approach represents a significant leap forward from conventional MPPT techniques. By leveraging the global search power of the GA to optimize the adaptive, data-driven reasoning of the ANFIS controller, this method effectively overcomes the major limitations of its predecessors. It delivers superior performance in terms of tracking speed and steady-state oscillations, and its robustness in reliably tracking the GMPP under partial shading provides a substantial improvement in energy harvest. While challenges related to computational complexity and hardware implementation remain, the hybrid GA-ANFIS approach is a prime example of how intelligent control systems are paving the way for more efficient, reliable, and intelligent solar energy systems, positioning them as a cornerstone of the next-generation energy grid.

References

- [1] N. Priyadarshi, S. Padmanaban, J. B. Holm-Nielsen, F. Blaabjerg, and M. S. Bhaskar, "An Experimental Estimation of Hybrid ANFIS-PSO-Based MPPT for PV Grid Integration Under Fluctuating Sun Irradiance," *IEEE Systems Journal*, vol. 14, no. 1, pp. 10–19, 2020.
- [2] A. A. Rezvani, M. H. Farsangi, G. B. Gharehpetian, and E. A. Farsangi, "Implementing GA-ANFIS for maximum power point tracking in PV system," *Indian Journal of Science and Technology*, vol. 8, no. 10, pp. 982–991, 2015.
- [3] A. Kumar, P. K. Gupta, and P. Sharma, "Development of ANFIS-based algorithm for MPPT controller for standalone photovoltaic system," *International Journal of Power Electronics and Drives Systems*, vol. 12, no. 3, pp. 1599–1607, 2021.
- [4] N. F. Ibrahim, M. M. Mahmoud, M. F. El-Nagar, A. A. El-Sattar, M. Al-Ahmar, M. H. Helal, and H. Abdelfattah, "A review of maximum power point tracking algorithms for photovoltaic systems: A comprehensive analysis," *PloS one*, vol. 18, no. 5, pp. e0285623, 2023.
- [5] S. R. O. A. Moreira, S. K. A. L. N. Viana, P. P. B. Ferreira, and J. M. F. C. Oliveira, "Adaptive Neuro-Fuzzy Inference System Optimized by Particle Swarm Optimization for Maximum Power Point Tracking in Photovoltaic Systems," *Electronics*, vol. 14, no. 13, p. 2649, 2023.